令和7年度入学試験問題

数 学

(数学 I · II · III · A · B · C)

注 意 事 項

- 1. 試験開始の合図があるまで、この問題冊子の中を見てはいけません。
- 2. 解答はすべて別紙解答用紙に記入しなさい。
- 3. 解答用紙は5枚です。
- 4. 問題番号の印刷してある解答用紙に解答しなさい。
- 5. 各解答用紙には、受験番号を記入する欄がそれぞれ<u>2箇所</u>あります。すべて 記入しなさい。
- 6. 試験終了後、問題冊子は持ち帰りなさい。

1 条件

$$x \ge 0$$
, $y \ge 0$, $x^2 + y^2 \le 2025$, $x \ge 3y$

をすべて満たす整数の組(x, y)は何組あるか答えよ。なお、必要に応じて下表を用いよ。

n	n^2	n	n^2
11	121	19	361
12	144	20	400
13	169	21	441
14	196	41	1681
15	225	42	1764
16	256	43	1849
17	289	44	1936
18	324	45	2025

2 以下の問いに答えよ。

問1 実数 x, y に対し, 不等式

$$|x| + |y| \ge |x + y|$$

が成り立つことを示せ。また、等号が成り立つ条件を求めよ。

問 2 n を 2 以上の自然数とする。n 個の実数 x_1, x_2, \dots, x_n に対し、不等式

$$|x_1| + |x_2| + \cdots + |x_n| \ge |x_1 + x_2 + \cdots + |x_n|$$

が成り立つことを、<u>数学的帰納法</u>を用いて示せ。なお、等号が成り立つ条件 は答えなくてよい。

3 正の実数 *x* に対し, *z* は

$$z^2 = x + i$$

を満たす複素数とする。zの偏角を θ とするとき、以下の問いに答えよ。ただし、i は虚数単位を表す。

問 1
$$\theta = \frac{\pi}{6}$$
 のとき、 x の値を求めよ。

間 2 $x = \sqrt{3}$ のとき、 θ の値を $0 \le \theta < 2\pi$ の範囲ですべて求めよ。

問 3 実数 x が

$$\frac{1}{\sqrt{3}} \le x < \sqrt{3}$$

を満たすとき、 θ のとりうる値の範囲を求めよ。ただし、 $0 \le \theta < 2\pi$ とする。

pを正の実数とする。x > 0 において

$$y = \frac{p}{x^p}$$

と表される曲線を C とするとき、以下の問いに答えよ。

- 問 1 曲線 C上の点(1, p)における接線の方程式を求めよ。また、この接線がx軸と交わる点を(s, 0)とするとき、sをpの式で表せ。
- 問 2 問 1 の s に対して、積分

$$S(p) = \int_{1}^{s} \frac{p}{x^{p}} dx$$

をpのみを用いた式で表せ。

問 3 極限

$$\lim_{p\to\infty} S(p)$$

を求めよ。ただし、自然対数の底 e が、

$$e = \lim_{x \to \infty} \left(1 + \frac{1}{x} \right)^x$$

で与えられることを用いてよい。

5 x > 0 で定義された連続関数

$$f(x) = (2 - x)\log x, \ g(x) = f'(x)$$

について、以下の問いに答えよ。

問 1 g'(x) < 0 であることを示せ。

問 2 方程式 g(x) = 0 はただ 1 つの解 $x = \alpha$ をもち、 $1 < \alpha < 2$ であることを示せ。

問 3 曲線 y = f(x) と x 軸によって囲まれた部分の面積を求めよ。